109 research outputs found

    Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems

    Get PDF
    Among Lab-on-a-chip techniques, digital microfluidics (DMF), allowing the precise actuation of discrete droplets, is a highly promising, flexible, biochemical assay platform for biomedical and bio-detection applications. However the durability of DMF systems remains a challenge due to biofouling of the droplet-actuating surface when high concentrations of biomolecules are employed. To address this issue, the use of superhydrophobic materials as the actuating surface in DMF devices is examined. The change in contact angle by electrowetting of deionised water and ovalbumin protein samples is characterised on different surfaces (hydrophobic and superhydrophobic). Ovalbumin droplets at 1 mg ml−1 concentration display better electrowetting reversibility on Neverwet®, a commercial superhydrophobic material, than on Cytop®, a typical DMF hydrophobic material. Biofouling rate, characterised by roll-off angle measurement of ovalbumin loaded droplets and further confirmed by measurements of the mean fluorescence intensity of labelled fibrinogen, appears greatly reduced on Neverwet®. Transportation of protein laden droplets (fibrinogen at concentration 0.1 mg ml−1 and ovalbumin at concentration 1 mg ml−1 and 10 mg ml−1) is successfully demonstrated using electrowetting actuation on both single-plate and parallel-plate configurations with performance comparable to that of DI water actuation. In addition, although droplet splitting requires further attention, merging and efficient mixing are demonstrated

    A cembranoid from tobacco prevents the expression of nicotineinduced withdrawal behavior in planarian worms

    Get PDF
    Using an adaptation of published behavioral protocols, we determined that acute exposure to the cholinergic compounds nicotine and carbamylcholine decreased planarian motility in a concentration-dependent manner. A tobacco cembranoid (1S,2E,4R,6R,7E,11E)-cembra-2,7,11- triene-4,6-diol (4R-cembranoid), also decreased planarian motility. Experiments in the presence of 1 μM 4R-cembranoid did increase the IC50 for nicotine- but not carbamylcholine-induced decrease in planarian motility. When planarians were exposed for 24 h to either nicotine or carbamylcholine at concentrations near their respective IC50 values and then transferred to plain media, nicotineexposed, but not carbamylcholine- or cembranoid-exposed worms displayed withdrawal-like distress behaviors. In experiments where planarians were pre-exposed to 100 μM nicotine for 24 h in the presence of 1 μM 4R-cembranoid, the withdrawal-like effects were significantly reduced. These results indicate that the 4R-cembranoid might have valuable applications for tobacco abuse research. This experimental approach using planarians is useful for the initial screening of compounds relevant to drug abuse and dependence

    A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets

    Get PDF
    This is an Open Access article, distributed under the terms of the Open Government Licence. http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved. The version of record (T. G. Foat, et al, 'A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets', Journal of Aerosol Science, Vol. 95, pp. 43-53, May 2016) is available online at doi: https://doi.org/10.1016/j.jaerosci.2016.01.007.An electrostatic precipitator (ESP) based personal sampler with a laboratory based electrowetting-on-dielectric (EWOD) concentrator could provide a high concentration rate personal aerosol sampler system. A prototype system has been developed based on the concept of a lightweight personal ESP collecting aerosol particles onto a hydrophobic surface followed by the use of an EWOD actuated droplet system to transfer the deposited sample into a microlitre size water droplet.A personal sampler system could provide military or civilian personnel with a wide area biological monitoring capability supplying information on who has been infected, what they have been infected with, how much material they were exposed to and possibly where and when they were infected. Current commercial-off-the-shelf (COTS) personal sampler solutions can be bulky and use volumes of water to extract the sample that are typically a thousand times greater than the proposed method.Testing of the prototype ESP at a sample flow rate of 5Lmin-1 demonstrated collection efficiencies greater than 80% for sodium fluorescein particles larger than 4μm diameter and of approximately 50% at 1.5μm. The ESP-EWOD system collection efficiency measured for Bacillus atrophaeus (BG) spores with an air sample flow rate of 20L min-1 was 2.7% with a concentration rate of 1.9×105 min-1. This was lower than expected due to the corona ions from the ESP affecting the hydrophobicity of the collection surface and hence the EWOD efficiency. However, even with this low efficiency the concentration rate is more than an order of magnitude higher than the theoretical maximum of the best current COTS personal sampler. For an optimised system, ESP-EWOD system efficiency should be higher than 32% with a comparable increase in concentration rate.Peer reviewe

    Comparison of Six Artificial Diets for Western Corn Rootworm Bioassays and Rearing

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is considered the most important maize (Zea mays L.) pest in the U.S. Corn Belt. Bioassays testing susceptibility to Bacillus thuringiensis Berliner (Bt) and other toxins of corn rootworm larvae often rely on artificial diet formulations. Successful bioassays on artificial diet for corn rootworm have sometimes been challenging because of microbial contamination. Toward the long-term goal of developing a universal artificial diet for western corn rootworm larvae, we compared larval survival, dry weight, and percentage of molt in 10-d bioassays from six current diets of which we were aware. In addition, as part of longer term rearing efforts, we recorded molting over an extended period of development (60 d). Six different artificial diets, including four proprietary industry diets (A, B, C, and D), the first published artificial diet for western corn rootworm (Pleau), and a new diet (WCRMO-1) were evaluated. Western corn rootworm larval survival was above 90% and contamination was 0% on all diets for 10 d. Diet D resulted in the greatest dry weight and percentage molting when compared with the other diets. Although fourth-instar western corn rootworm larvae have not been documented previously (only three instars have been previously documented), as many as 10% of the larvae from Diet B molted into a fourth instar prior to pupating. Overall, significant differences were found among artificial diets currently used to screen western corn rootworm. In order for data from differing toxins to be compared, a single, reliable and high-quality western corn rootworm artificial diet should eventually be chosen by industry, academia, and the public as a standard for bioassays

    Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, Spodoptera frugiperda, in Argentina

    Get PDF
    To develop a better understanding of the natural distribution of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and to update the knowledge of the incidence of its complex of parasitoids. S. frugiperda, samplings in whorl-stage corn were carried out in provinces of Argentina from 1999 to 2003. S. frugiperda larvae were collected from corn in localities of the provinces of Tucumán, Salta, Jujuy, Santiago del Estero, La Rioja, Córdoba, San Luis, Chaco and Misiones. In each locality 30 corn plants were sampled and only larvae located in those plants were collected. The parasitoids that emerged from S. frugiperda larvae were identified and counted. The abundance of the parasitoids and the parasitism rate were estimated. The S. frugiperda parasitoids collected were Campoletis grioti (Blanchard) (Hymenoptera: Ichneumonidae), Chelonus insularis (Cresson) (Hymenoptera: Braconidae), Archytas marmoratus (Townsend) (Diptera Tachinidae) and/or A. incertus (Macquart), Ophion sp. (Hymenoptera: Ichneumonidae), Euplectrus platyhypenae Howard (Hymenoptera: Eulophidae), and Incamyia chilensis (Aldrich) (Diptera Tachinidae). C. grioti was the most abundant and frequent during the five-year survey. Similar diversity of parasitoids was obtained in all the provinces, with the exception of I. chilensis and E. platyhypenae that were recovered only in the province of Salta. In the Northwestern region, in Tucumán, C. grioti and species of Archytas were the most abundant and frequent parasitoids. On the contrary, in Salta and Jujuy Ch. insularis was the parasitoid most abundant and frequently recovered. The parasitism rate obtained in Tucumán, Salta and Jujuy provinces were 21.96%, 17.87% and 6.63% respectively with an average of 18.93%. These results demonstrate that hymenopteran and dipteran parasitoids of S. frugiperda occurred differentially throughout the Argentinian provinces and played an important role on the natural control of the S. frugiperda larval population

    Venom Proteins of the Parasitoid Wasp Nasonia vitripennis: Recent Discovery of an Untapped Pharmacopee

    Get PDF
    Adult females of Nasonia vitripennis inject a venomous mixture into its host flies prior to oviposition. Recently, the entire genome of this ectoparasitoid wasp was sequenced, enabling the identification of 79 venom proteins. The next challenge will be to unravel their specific functions, but based on homolog studies, some predictions already can be made. Parasitization has an enormous impact on hosts physiology of which five major effects are discussed in this review: the impact on immune responses, induction of developmental arrest, increases in lipid levels, apoptosis and nutrient releases. The value of deciphering this venom is also discussed

    Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly

    Get PDF
    <div><h3>Background</h3><p>Some species of the whitefly <em>Bemisia tabaci</em> complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce.</p> <h3>Methodology/Principal Findings</h3><p>We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of <em>B. tabaci</em> complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding.</p> <h3>Conclusions/Significance:</h3><p>The combined method of cDNA amplification, Illumina sequencing and <em>de novo</em> assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission.</p> </div

    The epidemiology of enterococci

    Full text link
    The enterococci are emerging as a significant cause of nosocomial infections, accounting for approximately 10 % of hospital acquired infections. They are found as normal inhabitants of the human gastrointestinal tract, but may also colonize the oropharynx, vagina, perineal region and soft tissue wounds of asymtomatic patients. Until recently, evidence indicated that most enterococcal infections arose from patients' own endogenous flora. Recent studies, however, suggest that exogeneous acquisition may occur and that person-to-person spread, probably on the hands of medical personnel, may be a significant mode of transmission of resistant enterococci within the hospital. The use of broad-spectrum antibiotics, especially cephalosporins, is another major factor in the increasing incidence of enterococcal infections. These findings suggest that barrier precautions, as applied with other resistant nosocomial pathogens, along with more judicial use of antibiotics may be beneficial in preventing nosocomial spread of resistant enterococci.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47899/1/10096_2005_Article_BF01963631.pd

    The Effects of Density on the Growth and Temperature Production of Tenebrio molitor Larvae

    No full text
    Tenebrio molitor larvae live, at least partially, inside their feed. Hence, they do not live on a 2D plane but in a 3D environment. However, previous studies mainly focused on the optimal number of larvae for a given surface area, not the available volume. The goal of this study was to assess the growth and survival of mealworms in a standardized semi-industrial setting with a varying density (cm3) and substrate height. A full factorial experimental design was used with five larval densities (0.5&ndash;8 larvae/cm3) and four feed heights (1&ndash;8 cm) in 60 &times; 40 cm crates. Furthermore, the in-crate temperature was monitored and linked to the density. The results of this study clearly indicate that mealworm larvae prefer a low density (cm3). At low larvae densities, the substrate height was less important, with a slight preference for a thicker layer. In contrast, at high(er) larval densities, a lower layer thickness resulted in better growth. The in-crate week temperature varied up to 14 &deg;C (25&ndash;39 &deg;C) between treatments and could be predicted well based on the number and size of the larvae. These results may help the industry to improve their production efficiency in terms of larvae density, substrate height and room temperature
    corecore